TKACHENKO Serhii Brno University of Technology

Spoluautoři NEČAS David, DATSKEVICH Oleg, ČUPERA Jan, SPOTZ Zdeněk, VRBKA Martin, KULAK Leonid, FORET Rudolf

Nowadays, hard-on-hard bearings are widely used in joint replacements, where both components are made of hard materials as ceramics (alumina or zirconia) or CoCr alloys. These materials possess good tribological properties and corrosion resistance, however, ceramics are prone to brittle fracture, while CoCr alloys discharge metal ions and nanosize wear debris, which may lead to adverse tissue reactions, hypersensitivity and inflammations. Thus, the development of new materials with improved biocompatibility, tribological performance and reduced metal ion release is highly needed. The introduction of hard phases into titanium matrix to produce titanium matrix composites (TMCs) is an effective method to enhance wear and friction properties. Titanium matrix provides a high biocompatibility, corrosion resistance, strength and toughness for the composite, while the different types of ceramic, carbon or metal particles can be utilized as the reinforcements. The melting route is an attractive way to produce in situ TMCs, since the reinforcements, which are formed during phase transformations, have a good interfacial strength with the matrix. System Ti–Si enables to create in situ reinforced alloys due to phase transformations occurring under solidification and subsequent cooling. Our previous work showed 2-7 times better wear resistance for experimental Ti–6Si–5Zr alloy in comparison with commercial Ti–6Al–4V. This work was aimed to examine tribological performance of selected Ti–Si based in situ composites under sliding conditions using a commercial ball-on-disk tribometer. Measurements of the coefficients of friction and evaluation of the wear volumes were performed along with examinations of the wear track appearances.